spla
Loading...
Searching...
No Matches
cpu_v_eadd_fdb.hpp
Go to the documentation of this file.
1/**********************************************************************************/
2/* This file is part of spla project */
3/* https://github.com/JetBrains-Research/spla */
4/**********************************************************************************/
5/* MIT License */
6/* */
7/* Copyright (c) 2023 SparseLinearAlgebra */
8/* */
9/* Permission is hereby granted, free of charge, to any person obtaining a copy */
10/* of this software and associated documentation files (the "Software"), to deal */
11/* in the Software without restriction, including without limitation the rights */
12/* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell */
13/* copies of the Software, and to permit persons to whom the Software is */
14/* furnished to do so, subject to the following conditions: */
15/* */
16/* The above copyright notice and this permission notice shall be included in all */
17/* copies or substantial portions of the Software. */
18/* */
19/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR */
20/* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, */
21/* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE */
22/* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER */
23/* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, */
24/* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */
25/* SOFTWARE. */
26/**********************************************************************************/
27
28#ifndef SPLA_CPU_V_EADD_FDB_HPP
29#define SPLA_CPU_V_EADD_FDB_HPP
30
32
33#include <core/dispatcher.hpp>
34#include <core/registry.hpp>
35#include <core/top.hpp>
36#include <core/tscalar.hpp>
37#include <core/ttype.hpp>
38#include <core/tvector.hpp>
39
40namespace spla {
41
42 template<typename T>
43 class Algo_v_eadd_fdb_cpu final : public RegistryAlgo {
44 public:
45 ~Algo_v_eadd_fdb_cpu() override = default;
46
47 std::string get_name() override {
48 return "v_eadd_fdb";
49 }
50
51 std::string get_description() override {
52 return "sequential element-wise add vector operation";
53 }
54
55 Status execute(const DispatchContext& ctx) override {
56 auto t = ctx.task.template cast_safe<ScheduleTask_v_eadd_fdb>();
57 ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
58 ref_ptr<TVector<T>> v = t->v.template cast_safe<TVector<T>>();
59
60 if (r->is_valid(FormatVector::CpuDense) && v->is_valid(FormatVector::CpuCoo)) {
61 return execute_sp2dn(ctx);
62 }
63 if (r->is_valid(FormatVector::CpuDense) && v->is_valid(FormatVector::CpuDense)) {
64 return execute_dn2dn(ctx);
65 }
66
67 return execute_sp2dn(ctx);
68 }
69
70 private:
71 Status execute_sp2dn(const DispatchContext& ctx) {
72 TIME_PROFILE_SCOPE("cpu/vector_eadd_fdb_sp2dn");
73
74 auto t = ctx.task.template cast_safe<ScheduleTask_v_eadd_fdb>();
75 ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
76 ref_ptr<TVector<T>> v = t->v.template cast_safe<TVector<T>>();
77 ref_ptr<TVector<T>> fdb = t->fdb.template cast_safe<TVector<T>>();
78 ref_ptr<TOpBinary<T, T, T>> op = t->op.template cast_safe<TOpBinary<T, T, T>>();
79
80 r->validate_rwd(FormatVector::CpuDense);
81 v->validate_rw(FormatVector::CpuCoo);
82 fdb->validate_wd(FormatVector::CpuCoo);
83
84 auto* p_r = r->template get<CpuDenseVec<T>>();
85 const auto* p_v = v->template get<CpuCooVec<T>>();
86 auto* p_fdb = fdb->template get<CpuCooVec<T>>();
87 const auto& function = op->function;
88
89 assert(p_fdb->values == 0);
90
91 for (uint k = 0; k < p_v->values; k++) {
92 uint i = p_v->Ai[k];
93 T prev = p_r->Ax[i];
94 p_r->Ax[i] = function(prev, p_v->Ax[k]);
95
96 if (prev != p_r->Ax[i]) {
97 p_fdb->values += 1;
98 p_fdb->Ai.push_back(i);
99 p_fdb->Ax.push_back(p_r->Ax[i]);
100 }
101 }
102
103 return Status::Ok;
104 }
105
106 Status execute_dn2dn(const DispatchContext& ctx) {
107 TIME_PROFILE_SCOPE("cpu/vector_eadd_fdb_dn2dn");
108
109 auto t = ctx.task.template cast_safe<ScheduleTask_v_eadd_fdb>();
110 ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
111 ref_ptr<TVector<T>> v = t->v.template cast_safe<TVector<T>>();
112 ref_ptr<TVector<T>> fdb = t->fdb.template cast_safe<TVector<T>>();
113 ref_ptr<TOpBinary<T, T, T>> op = t->op.template cast_safe<TOpBinary<T, T, T>>();
114
115 r->validate_rwd(FormatVector::CpuDense);
116 v->validate_rw(FormatVector::CpuDense);
117 fdb->validate_wd(FormatVector::CpuDense);
118
119 auto* p_r = r->template get<CpuDenseVec<T>>();
120 const auto* p_v = v->template get<CpuDenseVec<T>>();
121 auto* p_fdb = fdb->template get<CpuDenseVec<T>>();
122 const auto& function = op->function;
123
124 const uint N = v->get_n_rows();
125 const T fill_value = fdb->get_fill_value();
126
127 cpu_dense_vec_fill(fdb->get_fill_value(), *p_fdb);
128
129 for (uint i = 0; i < N; i++) {
130 T prev = p_r->Ax[i];
131 p_r->Ax[i] = function(prev, p_v->Ax[i]);
132
133 if (prev != p_r->Ax[i]) {
134 p_fdb->Ax[i] = p_r->Ax[i];
135 }
136 }
137
138 return Status::Ok;
139 }
140 };
141
142}// namespace spla
143
144#endif//SPLA_CPU_V_EADD_FDB_HPP
Status of library operation execution.
Definition cpu_v_eadd_fdb.hpp:43
std::string get_description() override
Definition cpu_v_eadd_fdb.hpp:51
Status execute(const DispatchContext &ctx) override
Definition cpu_v_eadd_fdb.hpp:55
~Algo_v_eadd_fdb_cpu() override=default
std::string get_name() override
Definition cpu_v_eadd_fdb.hpp:47
Algorithm suitable to process schedule task based on task string key.
Definition registry.hpp:66
Automates reference counting and behaves as shared smart pointer.
Definition ref.hpp:117
void cpu_dense_vec_fill(const T fill_value, CpuDenseVec< T > &vec)
Definition cpu_format_dense_vec.hpp:48
std::uint32_t uint
Library index and size type.
Definition config.hpp:56
Definition algorithm.hpp:37
Execution context of a single task.
Definition dispatcher.hpp:46
ref_ptr< ScheduleTask > task
Definition dispatcher.hpp:48
#define TIME_PROFILE_SCOPE(name)
Definition time_profiler.hpp:92