spla
cpu_v_assign.hpp
Go to the documentation of this file.
1 /**********************************************************************************/
2 /* This file is part of spla project */
3 /* https://github.com/SparseLinearAlgebra/spla */
4 /**********************************************************************************/
5 /* MIT License */
6 /* */
7 /* Copyright (c) 2023 SparseLinearAlgebra */
8 /* */
9 /* Permission is hereby granted, free of charge, to any person obtaining a copy */
10 /* of this software and associated documentation files (the "Software"), to deal */
11 /* in the Software without restriction, including without limitation the rights */
12 /* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell */
13 /* copies of the Software, and to permit persons to whom the Software is */
14 /* furnished to do so, subject to the following conditions: */
15 /* */
16 /* The above copyright notice and this permission notice shall be included in all */
17 /* copies or substantial portions of the Software. */
18 /* */
19 /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR */
20 /* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, */
21 /* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE */
22 /* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER */
23 /* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, */
24 /* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */
25 /* SOFTWARE. */
26 /**********************************************************************************/
27 
28 #ifndef SPLA_CPU_V_ASSIGN_HPP
29 #define SPLA_CPU_V_ASSIGN_HPP
30 
32 
33 #include <core/dispatcher.hpp>
34 #include <core/registry.hpp>
35 #include <core/top.hpp>
36 #include <core/tscalar.hpp>
37 #include <core/ttype.hpp>
38 #include <core/tvector.hpp>
39 
40 namespace spla {
41 
42  template<typename T>
43  class Algo_v_assign_masked_cpu final : public RegistryAlgo {
44  public:
45  ~Algo_v_assign_masked_cpu() override = default;
46 
47  std::string get_name() override {
48  return "v_assign_masked";
49  }
50 
51  std::string get_description() override {
52  return "sequential masked vector assignment";
53  }
54 
55  Status execute(const DispatchContext& ctx) override {
56  auto t = ctx.task.template cast_safe<ScheduleTask_v_assign_masked>();
57  ref_ptr<TVector<T>> mask = t->mask.template cast_safe<TVector<T>>();
58 
59  if (mask->is_valid(FormatVector::CpuCoo))
60  return execute_sp2dn(ctx);
61  if (mask->is_valid(FormatVector::CpuDense))
62  return execute_dn2dn(ctx);
63 
64  return execute_sp2dn(ctx);
65  }
66 
67  private:
68  Status execute_sp2dn(const DispatchContext& ctx) {
69  TIME_PROFILE_SCOPE("cpu/vector_assign_sparse2dense");
70 
71  auto t = ctx.task.template cast_safe<ScheduleTask_v_assign_masked>();
72 
73  auto r = t->r.template cast_safe<TVector<T>>();
74  auto mask = t->mask.template cast_safe<TVector<T>>();
75  auto value = t->value.template cast_safe<TScalar<T>>();
76  auto op_assign = t->op_assign.template cast_safe<TOpBinary<T, T, T>>();
77  auto op_select = t->op_select.template cast_safe<TOpSelect<T>>();
78 
79  auto assign_value = value->get_value();
80 
81  r->validate_rwd(FormatVector::CpuDense);
82  mask->validate_rw(FormatVector::CpuCoo);
83 
84  auto* p_r_dense = r->template get<CpuDenseVec<T>>();
85  const auto* p_mask_sparse = mask->template get<CpuCooVec<T>>();
86  const auto& func_assign = op_assign->function;
87  const auto& func_select = op_select->function;
88 
89  uint N = p_mask_sparse->values;
90 
91  for (uint idx = 0; idx < N; ++idx) {
92  uint i = p_mask_sparse->Ai[idx];
93  auto x = p_mask_sparse->Ax[idx];
94  if (func_select(x)) {
95  p_r_dense->Ax[i] = func_assign(p_r_dense->Ax[i], assign_value);
96  }
97  }
98 
99  return Status::Ok;
100  }
101 
102  Status execute_dn2dn(const DispatchContext& ctx) {
103  TIME_PROFILE_SCOPE("cpu/vector_assign_dense2dense");
104 
105  auto t = ctx.task.template cast_safe<ScheduleTask_v_assign_masked>();
106 
107  auto r = t->r.template cast_safe<TVector<T>>();
108  auto mask = t->mask.template cast_safe<TVector<T>>();
109  auto value = t->value.template cast_safe<TScalar<T>>();
110  auto op_assign = t->op_assign.template cast_safe<TOpBinary<T, T, T>>();
111  auto op_select = t->op_select.template cast_safe<TOpSelect<T>>();
112 
113  auto assign_value = value->get_value();
114 
115  r->validate_rwd(FormatVector::CpuDense);
116  mask->validate_rw(FormatVector::CpuDense);
117 
118  auto* p_r_dense = r->template get<CpuDenseVec<T>>();
119  const auto* p_mask_dense = mask->template get<CpuDenseVec<T>>();
120  const auto& func_assign = op_assign->function;
121  const auto& func_select = op_select->function;
122 
123  uint N = r->get_n_rows();
124 
125  for (uint i = 0; i < N; ++i) {
126  if (func_select(p_mask_dense->Ax[i])) {
127  p_r_dense->Ax[i] = func_assign(p_r_dense->Ax[i], assign_value);
128  }
129  }
130 
131  return Status::Ok;
132  }
133  };
134 
135 }// namespace spla
136 
137 #endif//SPLA_CPU_V_ASSIGN_HPP
Status of library operation execution.
Definition: cpu_v_assign.hpp:43
std::string get_name() override
Definition: cpu_v_assign.hpp:47
~Algo_v_assign_masked_cpu() override=default
Status execute(const DispatchContext &ctx) override
Definition: cpu_v_assign.hpp:55
std::string get_description() override
Definition: cpu_v_assign.hpp:51
Algorithm suitable to process schedule task based on task string key.
Definition: registry.hpp:66
Automates reference counting and behaves as shared smart pointer.
Definition: ref.hpp:117
std::uint32_t uint
Library index and size type.
Definition: config.hpp:56
Definition: algorithm.hpp:37
Execution context of a single task.
Definition: dispatcher.hpp:46
ref_ptr< ScheduleTask > task
Definition: dispatcher.hpp:48
#define TIME_PROFILE_SCOPE(name)
Definition: time_profiler.hpp:92