spla
Loading...
Searching...
No Matches
cpu_m_reduce_by_row.hpp
Go to the documentation of this file.
1/**********************************************************************************/
2/* This file is part of spla project */
3/* https://github.com/JetBrains-Research/spla */
4/**********************************************************************************/
5/* MIT License */
6/* */
7/* Copyright (c) 2023 SparseLinearAlgebra */
8/* */
9/* Permission is hereby granted, free of charge, to any person obtaining a copy */
10/* of this software and associated documentation files (the "Software"), to deal */
11/* in the Software without restriction, including without limitation the rights */
12/* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell */
13/* copies of the Software, and to permit persons to whom the Software is */
14/* furnished to do so, subject to the following conditions: */
15/* */
16/* The above copyright notice and this permission notice shall be included in all */
17/* copies or substantial portions of the Software. */
18/* */
19/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR */
20/* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, */
21/* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE */
22/* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER */
23/* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, */
24/* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */
25/* SOFTWARE. */
26/**********************************************************************************/
27
28#ifndef SPLA_CPU_M_REDUCE_BY_ROW_HPP
29#define SPLA_CPU_M_REDUCE_BY_ROW_HPP
30
32
33#include <core/dispatcher.hpp>
34#include <core/registry.hpp>
35#include <core/tmatrix.hpp>
36#include <core/top.hpp>
37#include <core/tscalar.hpp>
38#include <core/ttype.hpp>
39#include <core/tvector.hpp>
40
41#include <algorithm>
42
43namespace spla {
44
45 template<typename T>
47 public:
48 ~Algo_m_reduce_by_row_cpu() override = default;
49
50 std::string get_name() override {
51 return "m_reduce_by_row";
52 }
53
54 std::string get_description() override {
55 return "reduce matrix by row on cpu sequentially";
56 }
57
58 Status execute(const DispatchContext& ctx) override {
59 auto t = ctx.task.template cast_safe<ScheduleTask_m_reduce_by_row>();
60 auto M = t->M.template cast_safe<TMatrix<T>>();
61
62 if (M->is_valid(FormatMatrix::CpuLil)) {
63 return execute_lil(ctx);
64 }
65 if (M->is_valid(FormatMatrix::CpuDok)) {
66 return execute_dok(ctx);
67 }
68
69 return execute_dok(ctx);
70 }
71
72 private:
73 Status execute_dok(const DispatchContext& ctx) {
74 auto t = ctx.task.template cast_safe<ScheduleTask_m_reduce_by_row>();
75 auto r = t->r.template cast_safe<TVector<T>>();
76 auto M = t->M.template cast_safe<TMatrix<T>>();
77 auto op_reduce = t->op_reduce.template cast_safe<TOpBinary<T, T, T>>();
78 auto init = t->init.template cast_safe<TScalar<T>>();
79
80 r->validate_wd(FormatVector::CpuDense);
81 M->validate_rw(FormatMatrix::CpuDok);
82
83 CpuDenseVec<T>* p_dense_r = r->template get<CpuDenseVec<T>>();
84 const CpuDok<T>* p_dok_M = M->template get<CpuDok<T>>();
85
86 std::fill(p_dense_r->Ax.begin(), p_dense_r->Ax.end(), init->get_value());
87
88 auto& func_reduce = op_reduce->function;
89
90 for (const auto& entry : p_dok_M->Ax) {
91 const uint i = entry.first.first;
92 const T x = entry.second;
93
94 p_dense_r->Ax[i] = func_reduce(p_dense_r->Ax[i], x);
95 }
96
97 return Status::Ok;
98 }
99 Status execute_lil(const DispatchContext& ctx) {
100 auto t = ctx.task.template cast_safe<ScheduleTask_m_reduce_by_row>();
101 auto r = t->r.template cast_safe<TVector<T>>();
102 auto M = t->M.template cast_safe<TMatrix<T>>();
103 auto op_reduce = t->op_reduce.template cast_safe<TOpBinary<T, T, T>>();
104 auto init = t->init.template cast_safe<TScalar<T>>();
105
106 r->validate_wd(FormatVector::CpuDense);
107 M->validate_rw(FormatMatrix::CpuLil);
108
109 CpuDenseVec<T>* p_dense_r = r->template get<CpuDenseVec<T>>();
110 const CpuLil<T>* p_lil_M = M->template get<CpuLil<T>>();
111
112 std::fill(p_dense_r->Ax.begin(), p_dense_r->Ax.end(), init->get_value());
113
114 auto& func_reduce = op_reduce->function;
115
116 for (std::size_t i = 0; i < p_lil_M->Ar.size(); i++) {
117 for (const auto& entry : p_lil_M->Ar[i]) {
118 const T x = entry.second;
119
120 p_dense_r->Ax[i] = func_reduce(p_dense_r->Ax[i], x);
121 }
122 }
123
124 return Status::Ok;
125 }
126 };
127
128}// namespace spla
129
130#endif//SPLA_CPU_M_REDUCE_BY_ROW_HPP
Status of library operation execution.
Definition cpu_m_reduce_by_row.hpp:46
std::string get_description() override
Definition cpu_m_reduce_by_row.hpp:54
std::string get_name() override
Definition cpu_m_reduce_by_row.hpp:50
Status execute(const DispatchContext &ctx) override
Definition cpu_m_reduce_by_row.hpp:58
~Algo_m_reduce_by_row_cpu() override=default
CPU one-dim array for dense vector representation.
Definition cpu_formats.hpp:74
std::vector< T > Ax
Definition cpu_formats.hpp:80
Dictionary of keys sparse matrix format.
Definition cpu_formats.hpp:128
Algorithm suitable to process schedule task based on task string key.
Definition registry.hpp:66
std::uint32_t uint
Library index and size type.
Definition config.hpp:56
Definition algorithm.hpp:37
Execution context of a single task.
Definition dispatcher.hpp:46
ref_ptr< ScheduleTask > task
Definition dispatcher.hpp:48