spla
cpu_m_reduce.hpp
Go to the documentation of this file.
1 /**********************************************************************************/
2 /* This file is part of spla project */
3 /* https://github.com/JetBrains-Research/spla */
4 /**********************************************************************************/
5 /* MIT License */
6 /* */
7 /* Copyright (c) 2023 SparseLinearAlgebra */
8 /* */
9 /* Permission is hereby granted, free of charge, to any person obtaining a copy */
10 /* of this software and associated documentation files (the "Software"), to deal */
11 /* in the Software without restriction, including without limitation the rights */
12 /* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell */
13 /* copies of the Software, and to permit persons to whom the Software is */
14 /* furnished to do so, subject to the following conditions: */
15 /* */
16 /* The above copyright notice and this permission notice shall be included in all */
17 /* copies or substantial portions of the Software. */
18 /* */
19 /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR */
20 /* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, */
21 /* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE */
22 /* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER */
23 /* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, */
24 /* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */
25 /* SOFTWARE. */
26 /**********************************************************************************/
27 
28 #ifndef SPLA_CPU_M_REDUCE_HPP
29 #define SPLA_CPU_M_REDUCE_HPP
30 
32 
33 #include <core/dispatcher.hpp>
34 #include <core/registry.hpp>
35 #include <core/tmatrix.hpp>
36 #include <core/top.hpp>
37 #include <core/tscalar.hpp>
38 #include <core/ttype.hpp>
39 #include <core/tvector.hpp>
40 
41 #include <algorithm>
42 
43 namespace spla {
44 
45  template<typename T>
46  class Algo_m_reduce_cpu final : public RegistryAlgo {
47  public:
48  ~Algo_m_reduce_cpu() override = default;
49 
50  std::string get_name() override {
51  return "m_reduce";
52  }
53 
54  std::string get_description() override {
55  return "reduce matrix on cpu sequentially";
56  }
57 
58  Status execute(const DispatchContext& ctx) override {
59  auto t = ctx.task.template cast_safe<ScheduleTask_m_reduce>();
60  auto M = t->M.template cast_safe<TMatrix<T>>();
61 
62  if (M->is_valid(FormatMatrix::CpuCsr)) {
63  return execute_csr(ctx);
64  }
65  if (M->is_valid(FormatMatrix::CpuLil)) {
66  return execute_lil(ctx);
67  }
68  if (M->is_valid(FormatMatrix::CpuDok)) {
69  return execute_dok(ctx);
70  }
71 
72  return execute_csr(ctx);
73  }
74 
75  private:
76  Status execute_dok(const DispatchContext& ctx) {
77  TIME_PROFILE_SCOPE("cpu/m_reduce_dok");
78 
79  auto t = ctx.task.template cast_safe<ScheduleTask_m_reduce>();
80 
81  ref_ptr<TScalar<T>> r = t->r.template cast_safe<TScalar<T>>();
82  ref_ptr<TScalar<T>> s = t->s.template cast_safe<TScalar<T>>();
83  ref_ptr<TMatrix<T>> M = t->M.template cast_safe<TMatrix<T>>();
84  ref_ptr<TOpBinary<T, T, T>> op_reduce = t->op_reduce.template cast_safe<TOpBinary<T, T, T>>();
85 
86  M->validate_rw(FormatMatrix::CpuDok);
87 
88  const CpuDok<T>* p_dok_M = M->template get<CpuDok<T>>();
89  auto& func_reduce = op_reduce->function;
90 
91  T result = s->get_value();
92 
93  for (const auto& entry : p_dok_M->Ax) {
94  result = func_reduce(result, entry.second);
95  }
96 
97  r->get_value() = result;
98 
99  return Status::Ok;
100  }
101 
102  Status execute_lil(const DispatchContext& ctx) {
103  TIME_PROFILE_SCOPE("cpu/m_reduce_lil");
104 
105  auto t = ctx.task.template cast_safe<ScheduleTask_m_reduce>();
106 
107  ref_ptr<TScalar<T>> r = t->r.template cast_safe<TScalar<T>>();
108  ref_ptr<TScalar<T>> s = t->s.template cast_safe<TScalar<T>>();
109  ref_ptr<TMatrix<T>> M = t->M.template cast_safe<TMatrix<T>>();
110  ref_ptr<TOpBinary<T, T, T>> op_reduce = t->op_reduce.template cast_safe<TOpBinary<T, T, T>>();
111 
112  M->validate_rw(FormatMatrix::CpuLil);
113 
114  const CpuLil<T>* p_lil_M = M->template get<CpuLil<T>>();
115  auto& func_reduce = op_reduce->function;
116 
117  T result = s->get_value();
118 
119  for (const auto& row : p_lil_M->Ar) {
120  for (const auto& entry : row) {
121  result = func_reduce(result, entry.second);
122  }
123  }
124 
125  r->get_value() = result;
126 
127  return Status::Ok;
128  }
129 
130  Status execute_csr(const DispatchContext& ctx) {
131  TIME_PROFILE_SCOPE("cpu/m_reduce_csr");
132 
133  auto t = ctx.task.template cast_safe<ScheduleTask_m_reduce>();
134 
135  ref_ptr<TScalar<T>> r = t->r.template cast_safe<TScalar<T>>();
136  ref_ptr<TScalar<T>> s = t->s.template cast_safe<TScalar<T>>();
137  ref_ptr<TMatrix<T>> M = t->M.template cast_safe<TMatrix<T>>();
138  ref_ptr<TOpBinary<T, T, T>> op_reduce = t->op_reduce.template cast_safe<TOpBinary<T, T, T>>();
139 
140  M->validate_rw(FormatMatrix::CpuCsr);
141 
142  const CpuCsr<T>* p_csr_M = M->template get<CpuCsr<T>>();
143  auto& func_reduce = op_reduce->function;
144 
145  T result = s->get_value();
146 
147  for (const auto v : p_csr_M->Ax) {
148  result = func_reduce(result, v);
149  }
150 
151  r->get_value() = result;
152 
153  return Status::Ok;
154  }
155  };
156 
157 }// namespace spla
158 
159 #endif//SPLA_CPU_M_REDUCE_HPP
Status of library operation execution.
Definition: cpu_m_reduce.hpp:46
std::string get_description() override
Definition: cpu_m_reduce.hpp:54
~Algo_m_reduce_cpu() override=default
std::string get_name() override
Definition: cpu_m_reduce.hpp:50
Status execute(const DispatchContext &ctx) override
Definition: cpu_m_reduce.hpp:58
Dictionary of keys sparse matrix format.
Definition: cpu_formats.hpp:128
robin_hood::unordered_flat_map< Key, T, pair_hash > Ax
Definition: cpu_formats.hpp:137
Algorithm suitable to process schedule task based on task string key.
Definition: registry.hpp:66
Automates reference counting and behaves as shared smart pointer.
Definition: ref.hpp:117
Definition: algorithm.hpp:37
Execution context of a single task.
Definition: dispatcher.hpp:46
ref_ptr< ScheduleTask > task
Definition: dispatcher.hpp:48
#define TIME_PROFILE_SCOPE(name)
Definition: time_profiler.hpp:92