spla
cpu_m_extract_row.hpp
Go to the documentation of this file.
1 /**********************************************************************************/
2 /* This file is part of spla project */
3 /* https://github.com/JetBrains-Research/spla */
4 /**********************************************************************************/
5 /* MIT License */
6 /* */
7 /* Copyright (c) 2023 SparseLinearAlgebra */
8 /* */
9 /* Permission is hereby granted, free of charge, to any person obtaining a copy */
10 /* of this software and associated documentation files (the "Software"), to deal */
11 /* in the Software without restriction, including without limitation the rights */
12 /* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell */
13 /* copies of the Software, and to permit persons to whom the Software is */
14 /* furnished to do so, subject to the following conditions: */
15 /* */
16 /* The above copyright notice and this permission notice shall be included in all */
17 /* copies or substantial portions of the Software. */
18 /* */
19 /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR */
20 /* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, */
21 /* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE */
22 /* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER */
23 /* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, */
24 /* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */
25 /* SOFTWARE. */
26 /**********************************************************************************/
27 
28 #ifndef SPLA_CPU_M_EXTRACT_ROW_HPP
29 #define SPLA_CPU_M_EXTRACT_ROW_HPP
30 
32 
33 #include <core/dispatcher.hpp>
34 #include <core/registry.hpp>
35 #include <core/tmatrix.hpp>
36 #include <core/top.hpp>
37 #include <core/tscalar.hpp>
38 #include <core/ttype.hpp>
39 #include <core/tvector.hpp>
40 
41 #include <algorithm>
42 #include <numeric>
43 
44 namespace spla {
45 
46  template<typename T>
47  class Algo_m_extract_row_cpu final : public RegistryAlgo {
48  public:
49  ~Algo_m_extract_row_cpu() override = default;
50 
51  std::string get_name() override {
52  return "m_extract_row";
53  }
54 
55  std::string get_description() override {
56  return "extract matrix row on cpu sequentially";
57  }
58 
59  Status execute(const DispatchContext& ctx) override {
60  auto t = ctx.task.template cast_safe<ScheduleTask_m_extract_row>();
61  auto M = t->M.template cast_safe<TMatrix<T>>();
62 
63  if (M->is_valid(FormatMatrix::CpuCsr)) {
64  return execute_csr(ctx);
65  }
66  if (M->is_valid(FormatMatrix::CpuLil)) {
67  return execute_lil(ctx);
68  }
69  if (M->is_valid(FormatMatrix::CpuDok)) {
70  return execute_dok(ctx);
71  }
72 
73  return execute_csr(ctx);
74  }
75 
76  private:
77  Status execute_dok(const DispatchContext& ctx) {
78  TIME_PROFILE_SCOPE("cpu/m_extract_row_dok");
79 
80  auto t = ctx.task.template cast_safe<ScheduleTask_m_extract_row>();
81 
82  ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
83  ref_ptr<TMatrix<T>> M = t->M.template cast_safe<TMatrix<T>>();
84  ref_ptr<TOpUnary<T, T>> op_apply = t->op_apply.template cast_safe<TOpUnary<T, T>>();
85  uint index = t->index;
86 
87  r->validate_wd(FormatVector::CpuCoo);
88  M->validate_rw(FormatMatrix::CpuDok);
89 
90  CpuCooVec<T>* p_coo_r = r->template get<CpuCooVec<T>>();
91  const CpuDok<T>* p_dok_M = M->template get<CpuDok<T>>();
92  auto& func_apply = op_apply->function;
93 
94  for (const auto [key, value] : p_dok_M->Ax) {
95  if (key.first == index) {
96  p_coo_r->values += 1;
97  p_coo_r->Ai.push_back(key.second);
98  p_coo_r->Ax.push_back(func_apply(value));
99  }
100  }
101 
102  cpu_coo_vec_sort(*p_coo_r);
103 
104  return Status::Ok;
105  }
106 
107  Status execute_lil(const DispatchContext& ctx) {
108  TIME_PROFILE_SCOPE("cpu/m_extract_row_lil");
109 
110  auto t = ctx.task.template cast_safe<ScheduleTask_m_extract_row>();
111 
112  ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
113  ref_ptr<TMatrix<T>> M = t->M.template cast_safe<TMatrix<T>>();
114  ref_ptr<TOpUnary<T, T>> op_apply = t->op_apply.template cast_safe<TOpUnary<T, T>>();
115  uint index = t->index;
116 
117  r->validate_wd(FormatVector::CpuCoo);
118  M->validate_rw(FormatMatrix::CpuLil);
119 
120  CpuCooVec<T>* p_coo_r = r->template get<CpuCooVec<T>>();
121  const CpuLil<T>* p_lil_M = M->template get<CpuLil<T>>();
122  auto& func_apply = op_apply->function;
123 
124  assert(index < M->get_n_rows());
125 
126  p_coo_r->Ai.reserve(p_lil_M->Ar[index].size());
127  p_coo_r->Ax.reserve(p_lil_M->Ar[index].size());
128 
129  for (const auto [key, value] : p_lil_M->Ar[index]) {
130  p_coo_r->values += 1;
131  p_coo_r->Ai.push_back(key);
132  p_coo_r->Ax.push_back(func_apply(value));
133  }
134 
135  return Status::Ok;
136  }
137 
138  Status execute_csr(const DispatchContext& ctx) {
139  TIME_PROFILE_SCOPE("cpu/m_extract_row_csr");
140 
141  auto t = ctx.task.template cast_safe<ScheduleTask_m_extract_row>();
142 
143  ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
144  ref_ptr<TMatrix<T>> M = t->M.template cast_safe<TMatrix<T>>();
145  ref_ptr<TOpUnary<T, T>> op_apply = t->op_apply.template cast_safe<TOpUnary<T, T>>();
146  uint index = t->index;
147 
148  r->validate_wd(FormatVector::CpuCoo);
149  M->validate_rw(FormatMatrix::CpuCsr);
150 
151  CpuCooVec<T>* p_coo_r = r->template get<CpuCooVec<T>>();
152  const CpuCsr<T>* p_csr_M = M->template get<CpuCsr<T>>();
153  auto& func_apply = op_apply->function;
154 
155  assert(index < M->get_n_rows());
156 
157  const uint start = p_csr_M->Ap[index];
158  const uint end = p_csr_M->Ap[index + 1];
159  const uint count = end - start;
160 
161  p_coo_r->Ai.reserve(count);
162  p_coo_r->Ax.reserve(count);
163 
164  for (uint k = start; k < end; k++) {
165  p_coo_r->values += 1;
166  p_coo_r->Ai.push_back(p_csr_M->Aj[k]);
167  p_coo_r->Ax.push_back(func_apply(p_csr_M->Ax[k]));
168  }
169 
170  return Status::Ok;
171  }
172  };
173 
174 }// namespace spla
175 
176 #endif//SPLA_CPU_M_EXTRACT_ROW_HPP
Status of library operation execution.
Definition: cpu_m_extract_row.hpp:47
~Algo_m_extract_row_cpu() override=default
std::string get_name() override
Definition: cpu_m_extract_row.hpp:51
std::string get_description() override
Definition: cpu_m_extract_row.hpp:55
Status execute(const DispatchContext &ctx) override
Definition: cpu_m_extract_row.hpp:59
CPU list-of-coordinates sparse vector representation.
Definition: cpu_formats.hpp:90
std::vector< uint > Ai
Definition: cpu_formats.hpp:96
std::vector< T > Ax
Definition: cpu_formats.hpp:97
Dictionary of keys sparse matrix format.
Definition: cpu_formats.hpp:128
Algorithm suitable to process schedule task based on task string key.
Definition: registry.hpp:66
uint values
Definition: tdecoration.hpp:58
Automates reference counting and behaves as shared smart pointer.
Definition: ref.hpp:117
void cpu_coo_vec_sort(CpuCooVec< T > &vec)
Definition: cpu_format_coo_vec.hpp:44
std::uint32_t uint
Library index and size type.
Definition: config.hpp:56
Definition: algorithm.hpp:37
Execution context of a single task.
Definition: dispatcher.hpp:46
ref_ptr< ScheduleTask > task
Definition: dispatcher.hpp:48
#define TIME_PROFILE_SCOPE(name)
Definition: time_profiler.hpp:92