spla
cpu_m_extract_column.hpp
Go to the documentation of this file.
1 /**********************************************************************************/
2 /* This file is part of spla project */
3 /* https://github.com/JetBrains-Research/spla */
4 /**********************************************************************************/
5 /* MIT License */
6 /* */
7 /* Copyright (c) 2023 SparseLinearAlgebra */
8 /* */
9 /* Permission is hereby granted, free of charge, to any person obtaining a copy */
10 /* of this software and associated documentation files (the "Software"), to deal */
11 /* in the Software without restriction, including without limitation the rights */
12 /* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell */
13 /* copies of the Software, and to permit persons to whom the Software is */
14 /* furnished to do so, subject to the following conditions: */
15 /* */
16 /* The above copyright notice and this permission notice shall be included in all */
17 /* copies or substantial portions of the Software. */
18 /* */
19 /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR */
20 /* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, */
21 /* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE */
22 /* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER */
23 /* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, */
24 /* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */
25 /* SOFTWARE. */
26 /**********************************************************************************/
27 
28 #ifndef SPLA_CPU_M_EXTRACT_COLUMN_HPP
29 #define SPLA_CPU_M_EXTRACT_COLUMN_HPP
30 
32 
33 #include <core/dispatcher.hpp>
34 #include <core/registry.hpp>
35 #include <core/tmatrix.hpp>
36 #include <core/top.hpp>
37 #include <core/tscalar.hpp>
38 #include <core/ttype.hpp>
39 #include <core/tvector.hpp>
40 
41 #include <algorithm>
42 #include <iterator>
43 #include <numeric>
44 
45 namespace spla {
46 
47  template<typename T>
48  class Algo_m_extract_column_cpu final : public RegistryAlgo {
49  public:
50  ~Algo_m_extract_column_cpu() override = default;
51 
52  std::string get_name() override {
53  return "m_extract_column";
54  }
55 
56  std::string get_description() override {
57  return "extract matrix column on cpu sequentially";
58  }
59 
60  Status execute(const DispatchContext& ctx) override {
61  auto t = ctx.task.template cast_safe<ScheduleTask_m_extract_column>();
62  auto M = t->M.template cast_safe<TMatrix<T>>();
63 
64  if (M->is_valid(FormatMatrix::CpuCsr)) {
65  return execute_csr(ctx);
66  }
67  if (M->is_valid(FormatMatrix::CpuLil)) {
68  return execute_lil(ctx);
69  }
70  if (M->is_valid(FormatMatrix::CpuDok)) {
71  return execute_dok(ctx);
72  }
73 
74  return execute_csr(ctx);
75  }
76 
77  private:
78  Status execute_dok(const DispatchContext& ctx) {
79  TIME_PROFILE_SCOPE("cpu/m_extract_column_dok");
80 
81  auto t = ctx.task.template cast_safe<ScheduleTask_m_extract_column>();
82 
83  ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
84  ref_ptr<TMatrix<T>> M = t->M.template cast_safe<TMatrix<T>>();
85  ref_ptr<TOpUnary<T, T>> op_apply = t->op_apply.template cast_safe<TOpUnary<T, T>>();
86  uint index = t->index;
87 
88  r->validate_wd(FormatVector::CpuCoo);
89  M->validate_rw(FormatMatrix::CpuDok);
90 
91  CpuCooVec<T>* p_coo_r = r->template get<CpuCooVec<T>>();
92  const CpuDok<T>* p_dok_M = M->template get<CpuDok<T>>();
93  auto& func_apply = op_apply->function;
94 
95  for (const auto [key, value] : p_dok_M->Ax) {
96  if (key.second == index) {
97  p_coo_r->values += 1;
98  p_coo_r->Ai.push_back(key.first);
99  p_coo_r->Ax.push_back(func_apply(value));
100  }
101  }
102 
103  cpu_coo_vec_sort(*p_coo_r);
104 
105  return Status::Ok;
106  }
107 
108  Status execute_lil(const DispatchContext& ctx) {
109  TIME_PROFILE_SCOPE("cpu/m_extract_column_lil");
110 
111  auto t = ctx.task.template cast_safe<ScheduleTask_m_extract_column>();
112 
113  ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
114  ref_ptr<TMatrix<T>> M = t->M.template cast_safe<TMatrix<T>>();
115  ref_ptr<TOpUnary<T, T>> op_apply = t->op_apply.template cast_safe<TOpUnary<T, T>>();
116  uint index = t->index;
117 
118  r->validate_wd(FormatVector::CpuCoo);
119  M->validate_rw(FormatMatrix::CpuLil);
120 
121  CpuCooVec<T>* p_coo_r = r->template get<CpuCooVec<T>>();
122  const CpuLil<T>* p_lil_M = M->template get<CpuLil<T>>();
123  auto& func_apply = op_apply->function;
124 
125  for (uint i = 0; i < M->get_n_rows(); i++) {
126  const auto& row = p_lil_M->Ar[i];
127 
128  typename CpuLil<T>::Entry fake{index, T()};
129  auto query = std::lower_bound(row.begin(), row.end(), fake, [](auto& a, auto& b) { return a.first < b.first; });
130 
131  if (query != row.end() && query->first == index) {
132  p_coo_r->values += 1;
133  p_coo_r->Ai.push_back(i);
134  p_coo_r->Ax.push_back(func_apply(query->second));
135  }
136  }
137 
138  return Status::Ok;
139  }
140 
141  Status execute_csr(const DispatchContext& ctx) {
142  TIME_PROFILE_SCOPE("cpu/m_extract_column_csr");
143 
144  auto t = ctx.task.template cast_safe<ScheduleTask_m_extract_column>();
145 
146  ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
147  ref_ptr<TMatrix<T>> M = t->M.template cast_safe<TMatrix<T>>();
148  ref_ptr<TOpUnary<T, T>> op_apply = t->op_apply.template cast_safe<TOpUnary<T, T>>();
149  uint index = t->index;
150 
151  r->validate_wd(FormatVector::CpuCoo);
152  M->validate_rw(FormatMatrix::CpuCsr);
153 
154  CpuCooVec<T>* p_coo_r = r->template get<CpuCooVec<T>>();
155  const CpuCsr<T>* p_csr_M = M->template get<CpuCsr<T>>();
156  auto& func_apply = op_apply->function;
157 
158  for (uint i = 0; i < M->get_n_rows(); i++) {
159  const auto row_begin = p_csr_M->Aj.begin() + p_csr_M->Ap[i];
160  const auto row_end = p_csr_M->Aj.begin() + p_csr_M->Ap[i + 1];
161 
162  auto query = std::lower_bound(row_begin, row_end, index);
163 
164  if (query != row_end && *query == index) {
165  p_coo_r->values += 1;
166  p_coo_r->Ai.push_back(i);
167  p_coo_r->Ax.push_back(func_apply(p_csr_M->Ax[std::distance(p_csr_M->Aj.begin(), query)]));
168  }
169  }
170 
171  return Status::Ok;
172  }
173  };
174 
175 }// namespace spla
176 
177 #endif//SPLA_CPU_M_EXTRACT_COLUMN_HPP
Status of library operation execution.
Definition: cpu_m_extract_column.hpp:48
std::string get_description() override
Definition: cpu_m_extract_column.hpp:56
~Algo_m_extract_column_cpu() override=default
Status execute(const DispatchContext &ctx) override
Definition: cpu_m_extract_column.hpp:60
std::string get_name() override
Definition: cpu_m_extract_column.hpp:52
CPU list-of-coordinates sparse vector representation.
Definition: cpu_formats.hpp:90
std::vector< uint > Ai
Definition: cpu_formats.hpp:96
std::vector< T > Ax
Definition: cpu_formats.hpp:97
Dictionary of keys sparse matrix format.
Definition: cpu_formats.hpp:128
std::pair< uint, T > Entry
Definition: cpu_formats.hpp:113
Algorithm suitable to process schedule task based on task string key.
Definition: registry.hpp:66
uint values
Definition: tdecoration.hpp:58
Automates reference counting and behaves as shared smart pointer.
Definition: ref.hpp:117
void cpu_coo_vec_sort(CpuCooVec< T > &vec)
Definition: cpu_format_coo_vec.hpp:44
std::uint32_t uint
Library index and size type.
Definition: config.hpp:56
Definition: algorithm.hpp:37
Execution context of a single task.
Definition: dispatcher.hpp:46
ref_ptr< ScheduleTask > task
Definition: dispatcher.hpp:48
#define TIME_PROFILE_SCOPE(name)
Definition: time_profiler.hpp:92