spla
cl_v_eadd_fdb.hpp
Go to the documentation of this file.
1 /**********************************************************************************/
2 /* This file is part of spla project */
3 /* https://github.com/JetBrains-Research/spla */
4 /**********************************************************************************/
5 /* MIT License */
6 /* */
7 /* Copyright (c) 2023 SparseLinearAlgebra */
8 /* */
9 /* Permission is hereby granted, free of charge, to any person obtaining a copy */
10 /* of this software and associated documentation files (the "Software"), to deal */
11 /* in the Software without restriction, including without limitation the rights */
12 /* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell */
13 /* copies of the Software, and to permit persons to whom the Software is */
14 /* furnished to do so, subject to the following conditions: */
15 /* */
16 /* The above copyright notice and this permission notice shall be included in all */
17 /* copies or substantial portions of the Software. */
18 /* */
19 /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR */
20 /* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, */
21 /* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE */
22 /* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER */
23 /* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, */
24 /* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */
25 /* SOFTWARE. */
26 /**********************************************************************************/
27 
28 #ifndef SPLA_CL_VECTOR_EADD_HPP
29 #define SPLA_CL_VECTOR_EADD_HPP
30 
32 
33 #include <core/dispatcher.hpp>
34 #include <core/registry.hpp>
35 #include <core/top.hpp>
36 #include <core/tscalar.hpp>
37 #include <core/ttype.hpp>
38 #include <core/tvector.hpp>
39 
40 #include <opencl/cl_counter.hpp>
41 #include <opencl/cl_fill.hpp>
42 #include <opencl/cl_formats.hpp>
44 
45 #include <sstream>
46 
47 namespace spla {
48 
49  template<typename T>
50  class Algo_v_eadd_fdb_cl final : public RegistryAlgo {
51  public:
52  ~Algo_v_eadd_fdb_cl() override = default;
53 
54  std::string get_name() override {
55  return "v_eadd_fdb";
56  }
57 
58  std::string get_description() override {
59  return "parallel vector element-wise add on opencl device";
60  }
61 
62  Status execute(const DispatchContext& ctx) override {
63  auto t = ctx.task.template cast_safe<ScheduleTask_v_eadd_fdb>();
64  ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
65  ref_ptr<TVector<T>> v = t->v.template cast_safe<TVector<T>>();
66 
67  if (r->is_valid(FormatVector::AccDense) && v->is_valid(FormatVector::AccCoo)) {
68  return execute_sp2dn(ctx);
69  }
70  if (r->is_valid(FormatVector::AccDense) && v->is_valid(FormatVector::AccDense)) {
71  return execute_dn2dn(ctx);
72  }
73 
74  return execute_sp2dn(ctx);
75  }
76 
77  private:
78  Status execute_sp2dn(const DispatchContext& ctx) {
79  TIME_PROFILE_SCOPE("cl/vector_eadd_fdb_sp2dn");
80 
81  auto t = ctx.task.template cast_safe<ScheduleTask_v_eadd_fdb>();
82  ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
83  ref_ptr<TVector<T>> v = t->v.template cast_safe<TVector<T>>();
84  ref_ptr<TVector<T>> fdb = t->fdb.template cast_safe<TVector<T>>();
85  ref_ptr<TOpBinary<T, T, T>> op = t->op.template cast_safe<TOpBinary<T, T, T>>();
86 
87  std::shared_ptr<CLProgram> m_program;
88  if (!ensure_kernel(op, m_program)) return Status::CompilationError;
89 
90  r->validate_rwd(FormatVector::AccDense);
91  v->validate_rw(FormatVector::AccCoo);
92  fdb->validate_wd(FormatVector::AccCoo);
93 
94  auto* p_cl_r = r->template get<CLDenseVec<T>>();
95  const auto* p_cl_v = v->template get<CLCooVec<T>>();
96  auto* p_cl_fdb = fdb->template get<CLCooVec<T>>();
97  auto* p_cl_acc = get_acc_cl();
98  auto& queue = p_cl_acc->get_queue_default();
99 
100  const uint n = p_cl_v->values;
101 
102  if (n == 0) return Status::Ok;
103 
104  CLCounterWrapper cl_fdb_size;
105  cl::Buffer cl_fdb_i(p_cl_acc->get_context(), CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, sizeof(uint) * n);
106  cl::Buffer cl_fdb_x(p_cl_acc->get_context(), CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, sizeof(T) * n);
107 
108  cl_fdb_size.set(queue, 0);
109 
110  auto kernel = m_program->make_kernel("sparse_to_dense");
111  kernel.setArg(0, p_cl_r->Ax);
112  kernel.setArg(1, p_cl_v->Ai);
113  kernel.setArg(2, p_cl_v->Ax);
114  kernel.setArg(3, cl_fdb_i);
115  kernel.setArg(4, cl_fdb_x);
116  kernel.setArg(5, cl_fdb_size.buffer());
117  kernel.setArg(6, n);
118 
119  cl::NDRange global(p_cl_acc->get_default_wgs() * div_up_clamp(n, p_cl_acc->get_default_wgs(), 1u, 1024u));
120  cl::NDRange local(p_cl_acc->get_default_wgs());
121  queue.enqueueNDRangeKernel(kernel, cl::NullRange, global, local);
122 
123  p_cl_fdb->values = cl_fdb_size.get(queue);
124  p_cl_fdb->Ai = cl_fdb_i;
125  p_cl_fdb->Ax = cl_fdb_x;
126 
127  return Status::Ok;
128  }
129 
130  Status execute_dn2dn(const DispatchContext& ctx) {
131  TIME_PROFILE_SCOPE("cl/vector_eadd_fdb_dn2dn");
132 
133  auto t = ctx.task.template cast_safe<ScheduleTask_v_eadd_fdb>();
134  ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>();
135  ref_ptr<TVector<T>> v = t->v.template cast_safe<TVector<T>>();
136  ref_ptr<TVector<T>> fdb = t->fdb.template cast_safe<TVector<T>>();
137  ref_ptr<TOpBinary<T, T, T>> op = t->op.template cast_safe<TOpBinary<T, T, T>>();
138 
139  std::shared_ptr<CLProgram> program;
140  if (!ensure_kernel(op, program)) return Status::CompilationError;
141 
142  r->validate_rwd(FormatVector::AccDense);
143  v->validate_rw(FormatVector::AccDense);
144  fdb->validate_wd(FormatVector::AccDense);
145 
146  auto* p_cl_r = r->template get<CLDenseVec<T>>();
147  const auto* p_cl_v = v->template get<CLDenseVec<T>>();
148  auto* p_cl_fdb = fdb->template get<CLDenseVec<T>>();
149  auto* p_cl_acc = get_acc_cl();
150  auto& queue = p_cl_acc->get_queue_default();
151 
152  const uint n = r->get_n_rows();
153 
154  cl_fill_value(queue, p_cl_fdb->Ax, n, fdb->get_fill_value());
155 
156  auto kernel = program->make_kernel("dense_to_dense");
157  kernel.setArg(0, p_cl_r->Ax);
158  kernel.setArg(1, p_cl_v->Ax);
159  kernel.setArg(2, p_cl_fdb->Ax);
160  kernel.setArg(3, n);
161 
162  cl::NDRange global(p_cl_acc->get_default_wgs() * div_up_clamp(n, p_cl_acc->get_default_wgs(), 1u, 1024u));
163  cl::NDRange local(p_cl_acc->get_default_wgs());
164  queue.enqueueNDRangeKernel(kernel, cl::NullRange, global, local);
165 
166  return Status::Ok;
167  }
168 
169  bool ensure_kernel(const ref_ptr<TOpBinary<T, T, T>>& op, std::shared_ptr<CLProgram>& program) {
170  CLProgramBuilder program_builder;
171  program_builder
172  .set_name("vector_eadd_fdb")
173  .add_type("TYPE", get_ttype<T>().template as<Type>())
174  .add_op("OP_BINARY", op.template as<OpBinary>())
175  .set_source(source_vector_eadd_fdb)
176  .acquire();
177 
178  program = program_builder.get_program();
179 
180  return true;
181  }
182  };
183 
184 }// namespace spla
185 
186 #endif//SPLA_CL_VECTOR_EADD_HPP
Status of library operation execution.
Definition: cl_v_eadd_fdb.hpp:50
~Algo_v_eadd_fdb_cl() override=default
std::string get_description() override
Definition: cl_v_eadd_fdb.hpp:58
Status execute(const DispatchContext &ctx) override
Definition: cl_v_eadd_fdb.hpp:62
std::string get_name() override
Definition: cl_v_eadd_fdb.hpp:54
Definition: cl_counter.hpp:58
uint get(cl::CommandQueue &queue, cl::Event *event=nullptr)
Definition: cl_counter.cpp:53
cl::Buffer & buffer()
Definition: cl_counter.cpp:59
void set(cl::CommandQueue &queue, uint value, cl::Event *event=nullptr)
Definition: cl_counter.cpp:56
Algorithm suitable to process schedule task based on task string key.
Definition: registry.hpp:66
Automates reference counting and behaves as shared smart pointer.
Definition: ref.hpp:117
std::uint32_t uint
Library index and size type.
Definition: config.hpp:56
Definition: algorithm.hpp:37
void cl_fill_value(cl::CommandQueue &queue, const cl::Buffer &values, uint n, T value)
Definition: cl_fill.hpp:60
Execution context of a single task.
Definition: dispatcher.hpp:46
ref_ptr< ScheduleTask > task
Definition: dispatcher.hpp:48
#define TIME_PROFILE_SCOPE(name)
Definition: time_profiler.hpp:92